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Abstract

A numerical scheme based on invariant imbedding methods is applied to the problem
of calculating the propagation constants for the surface-wave modes of an inhomogeneous
lossless dielectric slab. The method results in a first-order Riccati equation for the
transverse wave impedance (or admittance), which is numerically integrated across the
slab to yield the transverse resonance condition for each specific mode. The method is

generalized to treat 10SSY structures, as well as coupling between slabs.

Introduction

Recently, some interest has been given to
surface wave modes guided by various inhomo-
geneous dielectric structures for use in opti-
cal communication and processing systems. In
the case of a single dielectric waveguide,
analytical solution appears possible o ly for

2a few specific permittivity profilesl~ , for
the case of the near-grazing mode3, and for
the h’gh-order modes in a multi-mode struc-
ture. k In general, however, the problem can
only be solved numerically; most often the
inhomogeneous profile is approximated by a
finite number of equally-spaced homogeneous
layers, and the modal characteristics are de-
termined from a system of simultaneous equa-
tions obtained from the wave solutions within

d the boundary conditions
~t%~%r~%~3’P Such an approach be-
comes cumbersome and time-consuming as the
number of layers increases, and there is no
satisfactory criterion for determining the
layer size required to obtain a specified ac-
curacy. In this paper, a different method,
utilizing the transverse impedance concept, is
developed to analyze the modal and coupling
characteristics in single or multiple slabs
with arbitrary permittivity profiles. A first-
order Ricatti differential equation for the
impedance (or admittance) is formulated and
numerically integrated across the slab(s) in
order to satisfy the transverse resonance
condition for any specific mode. It appears
that this approach not only is rapidly con-
vergent and highly accurate, but also can pro-
vide useful insight into the design of dielec-
tric waveguides.

Formulation

We assume that the guide consists of a
single inhomogeneous lossless slab between
x= Oandx= d, with permittivity profile
E(x) = SOS=(X). The slab is bounded on both
sides by infinite homogeneous lossless di-
electrics: for x$-d of permittivity

‘1
= EoErl and for x<O of permittivity

‘2
=EE >sl, with no 10ss of generality.

or2-

The system is infinite and uniform in the y-
direction, and propagation in the z-direction
is assumed, so that field dependence is
eXp(j&-jk ~z) .The fields can be shown from
Maxwell’s ~quations to satisfy

(If’)’ + yz(u;a)f(u) = o (1)

where f is K is 1 or I/crt and
‘Y ‘r %;),e

Y2 is (s
~

-U2) or (cr for TE or TM

modes re pectively. In ad~ition, at the
boundaries we require

f’ (Ui) = 6irif(ui) i = 1,2 (2)

1

where U1 = kod, U2 = O, ri = (U2- Sr,)z, and

~i is -I, +1, -er(Ul)/Er or Sr(0)/EL for TE

A
r2

modes (i = 1~2) or TM mo es (i = 112) respec-
tive ly. We have set u = kox and ci = B/kot

2
where k. = U2POS0. We require that rl and r2

be real and positive in order to have an evan-
escent field outside the slab.

We now make use of the Prufer transforma-
tion7~8

f(u) = r(u)sin O(u)
(3)

K(u)f’ (u) = r(u)cos 6(U)

so that

e’(u) = K(u) ‘1cos2e (u) + y2(u;ci)sin29 (u) (4)

with boundary conditions

e (o) = arccot(6~l’2) (5)

9 (kod) = arccot(~~rl) + (p-l)n (6)

where
~: ‘s

-1 or -l/cr and 6; is +1 or
1

+1/& for TE or TM modes, respectively, and
‘2

p~as yet) is any integer. Thus the pro aga-
tlon constant u. corresponding to the p
face mode, ifi~ exists, will satisfy

& sur-

P(ap) ~e(kod;ap)-arccot(d~rl) -(p-l)IT=O (7)

where fl(u;u) denotes the solution of (4) sub-
ject to (5). using a derivation similar to
that of [71 or [81, it i
show that, since

, ~~ not difficult to
U2 ~n=er~, and

x (u; a) ❑ a/a~(e(u;c4)) < 0 for ail u and a un-
der consideration,

QLn c a; < a~ax = E? ‘s~~;ds~face wave
max

mode, so that the number of such modes is
given by

‘max
= greatest integer {[6(kod;amin)

- arccot(cS~(sr - Er )i)l/n + 11
21
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Now if we let

z(u) = cot fl (u) (= jusoEz/Hy),

and

Y(u) = tan e (u)

then Z and Y are, respectively, a normalized
wave impedance and admittance in the case of
TM-modes, and from (4) we have

Z’(u) = -(Z2(u)/K(u) + y2(U;U)) (8)

with a similar equation for Y. This equation
provides a numerically more efficient scheme
than (4) because of the absence of tri ono-

?hmetric evaluations; however, for the p—
order mode there are (p-1) poles in Z and P
poles in Y as a result of field oscillations
within the slab. This is avoided numerically
by switching between Z and Y during inte-
gration across the slab whenever the absolute
value of one becomes larger than some speci-
fied value, say unity.9 In addition the order
of the mode can be determined by counting the
number of poles in Z, say m, so that

O(kod) = mm + arccot Z(uo)

To integrate Y or Z across the slab accu-
rately, a Runge-Kutta method with assigned
error bounds on single steps is employedlo,
and, combined with adaptive stepping proce-
dures, an overall error bound is maintained
on the integration.

TO find the roots of ( 7 ), Newton’s method

can be used, with successive corrections of
the form

a
n+l = an

- PAP’

so that X(UO;Q) is required. But X satis-
fies

x’ = {[Y2- K-1]-2ZX - 2aK}/(l+Z2)

and a similar relation involving Y, where we

have made use of the fact that 2
2

aa Y = -2ciK

for both the 9X and TM case. Hence x can be
integrated across the slab simultaneously with
Y and Z.

Lossy and Multiple Slabs

If any part of the guide is 10SSY, so that
is complex, but Im(c ) << Re(c ) in a Prac-

~~cal situation, this m~thod can ~e extended
merely by making the appropriate quantities
complex, choosing the proper branch of the
square root, and using the corresponding a
for the lossless slab as an initial guess for
Newton’s method.

For multiple slabs which are separated by
regions of constant permittivity, wide com-
pared to one of the slabs, it can be seen that
in the intermediate regions (2.1) has the
solution (for TM modes)

E=Z(u1;12)C0S y(U-UL)-Y sin Y(u-u )
.z(u;a) = %r Erz(ul;a)sin y(u-ul)+y Cos y(u-ul)

Results and Discussion

This method has been applied to the guide
obtained by diffusing a layer of dielectric
material onto a substrate of lower dielectric
constant with an air interface above the dif-
fused layer. In Fig. 1 the dispersion curve
was obtained for several diffusion widths, and
in Fig. 2 for two other values of substrate
permittivity. In Fig. 3 a symmetrical guide
embedded in the substrate is shown. For all
these guides, the diffusion profile was ap-
proximated by a sinusoid for convenience. In
all results, E

r
= 1.53 and A6/ko= Q-atin.

max

It should be noted that, the guides of
Figs. 1 and 2, unlike symmetric guides, exhib-
it non-zero cutoff frequencies for all modes.
The reeults seem to indicate that less distor-
tion of signals due to dispersion (e.g. in
pulse propagation) can be achieved at a given
frequency by (a) making (e

rmax
- Er2) as small

as practical,(b) adjusting the difxusion width
d, for as gentle a transition as possible,
and/or (c) increasing slab width (while re-
maining in single-mode operation). In additiob
operation at relatively low frequencies is
better in the symmetric guides of Fig. 3,
since at low frequencies the guides of Figs. 1
and 2, when not cut off, are highly dispersive
(since on these normalized dispersion curves,
the horizontal line has no dispersion). The
curves were obtained on a CDC 6400 computer
(to 5-digit accuracy) in an average time of 45
seconds for a set of curves with an averaqe of
30 data points.
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i.e.,the transmission line impedance relation,
and so the tedious n~erical integration along
the intermediate region is avoided.
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