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Abstract

A numerical scheme based on invariant imbedding methods is applied to the problem
of calculating the propagation constants for the surface-wave modes of an inhomogeneous

lossless dielectric slab.

The method results in a first-order Riccati equation for the

transverse wave impedance (or admittance), which is numerically integrated across the

slab to yield the transverse resonance condition for each specific mode.

The method is

generalized to treat lossy structures, as well as coupling between slabs.

Introduction

Recently, some interest has been given to
surface wave modes guided by various inhomo-
geneous dielectric structures for use in opti-
cal communication and processing systems. In
the case of a single dielectric waveguide,
analytical solution appears possible oEly for
a few specific permittivity profilesl' : for
the case of the near-grazing mode3, and for
the high—order modes in a multi-mode struc-
ture. In general, however, the problem can
only be solved numerically; most often the
inhomogeneous profile is approximated by a
finite number of equally-spaced homogeneous
layers, and the modal characteristics are de-
termined from a system of simultaneous equa-
tions obtained from the wave solutions within
the various layerss gnd the boundary conditiors
at the interfaces.™’ Such an approach be-
comes cumbersome and time-consuming as the
number of layers increases, and there is no
satisfactory criterion for determining the
layer size required to obtain a specified ac-
curacy. In this paper, a different method,
utilizing the transverse impedance concept, is
developed to analyze the modal and coupling
characteristics in single or multiple slabs
with arbitrary permittivity profiles. A first-
order Ricatti differential equation for the
impedance (or admittance) is formulated and
numerically integrated across the slab(s) in
order to satisfy the transverse resonance
condition for any specific mode. It appears
that this approach not only is rapidly con-
vergent and highly accurate, but also can pro-
vide useful insight into the design of dielec-
tric waveguides.

Formulation

We assume that the guide consists of a
single inhomogeneous lossless slab between
X =0 and x = d, with permittivity profile
e(x) = ¢ e (x). The slab is bounded on both
sides by infinite homogeneous lossless di-

electrics: for x>d of permittivity
€, = .8, and for x<0 of permittivity
€y = eoerz_gel, with no loss of generality.

The system is infinite and uniform in the y-
direction, and propagation in the z-direction
is assumed, so that field dependénce is
exp(jwt-Jjk_az).The fields can be shown from
Maxwell's 8quations to satisfy

(KW £ (W) ' + y2(usa)£(u) = 0 (1)
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where £ is E_or H_,,6 K is 1 or l/er, and
Y2 is (e_-a‘) or (e_-u2)/c_ for TE or TM
nodes regpectively. In addition, at the
boundaries we require

f'(ui) = §;T,f(uy) i=1,2 (2)

1
where u; =k d, uy =0, Iy = (az- eri)z,
Si is -1, +1, —er(ul)/ar or sr(O)/er for TE
modes (i = 1,2) or TM modes (i = 1,2) respec-
tively. We have set u = kgx and a = B/kg,
where ki = wzuoeo. We require that I', and Ty
be real and positive in order to have an evan-
escent field outside the slab.

and

We now make use of the Prufer transforma-
tion7:8
£(u) = r(u)sin 6 (u)

K{u)f' () =

(3)
r{u)cos 6(u)

so that
8'(w) = K(w tcosZe(uw) + y2(ura)sin®alu) (4)

with boundary conditions
8(0) =

1

(5)
(6)

1
arccot(szrz)

1]
e(kod) = arccot(alrl) + (p-L)T

where 61 is -1 or -1/¢, and 65 is +1 or
1

+1/er for TE or TM modes, respectively, and

2
pl(as yet) is any
tion constant o
face mode, if ig

integer. Thus the propaga=-
corresponding to the p sur=-
exists, will satisfy

P(ap) = e(kod;ap)—arccot(é‘;_l"l)-(p-l)1T= 0o (7

where 8 (uja) denotes the solution of (4) sub-
ject to (5). Using a derivation similar to
that of [7] ox [8],.it is not daifficult to
show that, since 02 > g, = ¢ , and

min r
x(uja) = 8/9a(@(wia)) < 0 £fox a%l u and o un-—
der consideration, o_ is bounded by
2 2 2
= W
%oin < up < G €y for any surface wave

max
mode, so that the number of such modes is
given by

= greatest integex {[e(kod;am- )

Prax in

1
- arccot(&i(arz— erl)z)]/ﬂ + 1}

and 1 < p < Prax®



Now if we let

Z{u) = cot 8 (u) (= jweoEz/Hy),
and
Y(u) = tan 8 (u)
then Z and ¥ are, respectively, a normalized

wave impedance and admittance in the case of
TM-modes, and from (4) we have

7' (W = -(z2(w /K + v (ura)) (8)
with a similar equation for Y. This equation
provides a numerically more efficient scheme
than (4) because of the absence of trigono-
metric evaluations; however, for the ptl
order mode there are (p-l) poles in Z and p
poles in Y as a result of field oscillations
within the slab. This is avoided numerically
by switching between 2 and Y during inte-
gration across the slab whenever the absolute
value of one becomes larger than some speci-
fied value, say unity. In addition the order
of the mode can be determined by counting the
number of poles in 2, say mn, so that

8 (k)

mT + arccot Z(uo)

To integrate Y or 2 across the slab accu-
rately, a Runge-Kutta method with assigned
error bounds on single steps is employedlo,
and, combined with adaptive stepping proce-
dures, an overall error bound is maintained
on the integration.

To find the roots of (7 ), Newton's method
can be used, with successive corrections of
the form

Q.

ntl - %n T P(mn)/P.(mn)

so that x(uo;a) is required. But X satis~-

fies
x' = {[v3- K-11-22% - 20K}/ (1+2%)

and a similar relation involving Y, whexe we
have made use of the fact that 3% yz = =2¢0K
for both the TE and TM case. Hence ¥ can be

integrated across the slab simultaneously with
Y and 2.

Lossy and Multiple Slabs

If any part of the guide is lossy, so that
e is complex, but Im(e_ ) << Re(e ) in a prac-
tical situation, this m&thod can Be extended
merely by making the appropriate quantities
complex, choosing the proper branch of the
square root, and using the corresponding o
for the lossless slab as an initial guess for
Newton's method.

For multiple slabs which are separated by
regions of constant permittivity, wide com-
pared to one of the slabs, it can be seen that
in the intermediate regions (1l) has the
solution (for TM modes)

_x erz(ul;a)cos y(u-ul)-w sin Y(u-u,)
€r €.2(u ;W) sin Y(u-uy)+y cos ¥ (u=u,)

2 (u;o)

i.e,,the transmission line impedance relation,
and so the tedious numerical integration along
the intermediate region is avoided.
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Results and Discussion

This method has been applied to the guide
obtained by diffusing a layer of dielectric
material onto a substrate of lower dielectric
constant with an air interface above the dif-
fused layer. 1In Fig. 1 the dispersion curve
was obtained for several diffusion widths, and
in Fig. 2 for two other values of substrate
permittivity. In Fig. 3 a symmetrical guide
embedded in the substrate is shown. For all
these guides, the diffusion profile was ap-
proximated by a sinusoid for convenience. In
all results, € = 1.53 and AB/k = a-0_, ,

Trax o) min

It should be noted that, the guides of
Figs. 1 and 2, unlike symmetric guides, exhib-
it non-zero cutoff frequences for all modes.
The results seem to indicate that less distor-
tion of signals due to dispersion (e.g. in
pulse propagation) can be achieved at a given
frequency by (a) making (Ermax- €y ) as small

as practical, (b) adjusting the difrusion width
d, for as gentle a transition as possible,
and/or (c¢) increasing slab width (while re-
maining in single~mode operation). In addition,
operation at relatively low frequences is
better in the symmetric guides of Fig. 3,
since at low frequencies the gulides of Figs. 1
and 2, when not cut off, are highly dispersive
(since on these normalized dispersion curves,
the horizontal line has no dispersion). The
curves were obtained on a CDC 6400 computer
(to 5-digit accuracy) in an average time of 45
seconds for a set of curves with an average of
30 data points.
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